Programming Abstractions

Week 3-1: Map and Apply

Stephen Checkoway

Map: the simple case
(map proc 1lst)

map applies the procedure proc to every element in list 1st

(map £ '(1 2 3 4)) => (list (f 1) (f 2) (f 3) (f 4))

(map subl '(10 15 20)) => '(9 14 19)

(map (A (x) (list x x)) '(a b c)) => '((a a) (b b) (c ¢))

(map first '"((a 5) (b 6) (c 7))) => "(a b c)

What is the result of this?

(map rest '((a 5) (b 6) (c 7)))

((3) (6) (7))

(5 6 7)

((b 6) (c 7))
(6) " (7)

(b c)

What is the result of this?

(map (A (1lst) (cons (first 1lst) 1lst))
((1 2) (3 4)))

(1 3)
((1 1 2) (3 3 4))

(1 (1 2)) (3 (3 4)))

(1 4) (2 3))

(1 3) (2 4))

How would we implement map?

Non-tail-recursive
> Simple, clear

Tall-recursive
» Use an accumulator to hold the reversed results, then reverse

General map
(map proc 1lstl 1lst2 .. 1lstn)

If proc Is a procedure of n arguments, then map will apply proc to corresponding
elements n lists (which all have the same length)

(map £ '"(abc) "(1 2 3)) => (list (f 'a 1) (£ 'b 2) (f 'c 3))
(map cons '(a b c) '"(xy 2)) => "((a . x) (b .vy) (¢ . 2))
(map list '(a b) '(c d) '"(e f£)) => "((a c e) (b d f))

(map * '(0 1 2) '(3 4 5) "(6 7 8)) => "(0 28 80)

How would we implement the general map?

Two Issues
> How do we write a procedure that takes a variable number of arguments?
> How do we apply a procedure to a variable number of arguments?

Aside: parameters vs. arguments

(define (foo x y z) ..)

(foo 1 5 'blarg) ‘

Parameters: The identifiers that appear in the definition of procedures
Arguments: The values that are passed to the procedure

When a procedure is called, the parameters will be bound to the corresponding
arguments

Variable argument procedure
(define foo (A params body))

When params is a list of identifiers, the identifiers are bound to the values of
the procedure’'s arguments

When params is an identifier (i.e., not a list), then the identifier is bound to a list
of the procedure's arguments

(define count-args (count-args 'a 2 #f) => 3
(AN params

(length params)))

(define list
(AN elements elements))

Required parameters + variable parameters
(define foo (A (x v 2 . params)) body)

Separate the required parameters from the list of variable parameters with a
period

(define drop-2
(N (x v . 1st) 1lst))

(drop-2 1 2 3 4)

» xI1sboundto 1

> y IS bound to 2

» 1lstisboundto (list 3 4)

Aside: The period syntax make some sense

Recallthat ' (x . y)isapair(.e., (cons 'x 'vy))

A list is eitherempty orit'sapair (x . 1lst) where 1st is a list

Thelist ' (x vy 2z) Is the shorthand notationfor '(x . (y 2))

'(y z) Isshorthandfor '(y . (z))and '(z) isshorthandfor '(z . ())

Lots of equivalent ways to write ' (x v 2)
> (Y 2))

y - (2))

Yy 2 . ())

- (y « (2 « ())))

y - (2 .« ()))

\ \ v v

Variable argument procedure with define
(define (foo . params) body)

(define (count-args . args)
(length args))

With some required parameters
(define (drop-2 X y . others)
others)

Applying a procedure to a list of arguments
(apply proc 1lst)

Applies proc to the arguments in 1st

(define (maximum lst)
(apply max lst))

(maximum '(1 3 4 2)) => (apply max '(1 3 4 2))
=> (max 1 3 4 2)

(define (sum 1lst)
(apply + 1lst))
(sum '(1 2 3)) => (apply + '"(1 2 3)) => (+ 1 2 3) => 6

Applying with some fixed arguments
(apply proc v.. lst)

apply takes a variable number of arguments where the final one is a list and
applies proc to all of those arguments

(apply proc 1 2 3 '"(4 5 6)) => (proc 1 2 3 4 5 6)

If 1st is a list of integers and you want to get a list with all of the integers
doubled (i.e., ' (1 2 3)->"'(2 4 6)), which should you use?

. (* 2 1lst)

. (apply (A (x) (* 2 x)) lst)

. (map (A (xX) (* 2 x)) lst)

. (apply * 2 1lst)

. (map * 2 1lst)

How would you write a procedure that maps a procedure over each of a
variable number of arguments, returning the result as a list? E.g.,
(map-over addl 1 3 5 7) -> '"(2 4 6 8)

A. (define (map-over f 1lst)
(map £ 1lst))

B. (define (map-over f lst)
(apply £ 1lst))

C. (define (map-over f . 1lst)
(map £ 1lst))

D. (define (map-over f . 1lst)
(apply £ 1lst))

If foo Is a procedure that takes a variable number of arguments and 1st is a
list of arguments you want to pass to foo, how do you do it?
E.g.,iflstis '(a b c),youwanttocall (foo 'a 'b 'c).

A. (map foo 1lst)

B. (apply foo lst)

C. (map (A (x) (apply foo x)) 1lst)

D. (apply (A (x) (map foo x)) lst)

E. This is not possible

Distance of a 2-d point from the origin

Recall that a point (x, y) lies 4 [x* + y? from the origin

Let's make a procedure to compute this
(define (distance-from-origin X V)

(sgrt (+ (* x X) (* Y ¥))))

(distance-from-origin 3 4) => 5

Distance of a 2-d point from the origin

(define (distance-from-origin X V)
(sgrt (+ (* X X) (* Y ¥))))

If we have a point

(define p '(5 -8))

how can we get its distance from the origin? We can't use
(distance-from-origin p)

We can use apply
(apply distance-from-origin p)

Of course, we could also do
(distance-from-origin (first p) (second p))

Using map and apply together

Let's sum up all numbers in a structured (i.e., non-flat) list

(define (sum-all x)
(cond [(number? x) Xx]
[(1list? x) (apply + (map sum-all x))]
[else
(error 'sum-all
"~v 1sn't a number or list”

X)1))

(sum-all '(1 2 (3 4 (5) () 6) 8)) => 29
(sum-all "(1 2 (x))) => sum-all: 'xXx 1sn't a number or list

Thinking through the general map

(map proc 1lstl 1lst2 .. 1lstn)

We can use a variable-argument procedure definition for map
(define (map proc . 1lsts) ..)

Now lstsisthelist (1ist 1lstl 1lst2 .. 1lstn)

At each step of map, we need to compute
(proc (first 1lstl) (first 1lst2) .. (first 1lstn))

The problem is we don't have a fixed number of lists, we just have a list of lists

Solution: write a procedure map1 that just works with a single list
(apply proc (mapl first lsts))

gves s cotaningte st clement of each s

General map implementation

Give this a try on your own!

Hints

> Define a helper function (mapl £ 1lst) that applies a single-argument
procedure f to the elements of 1st

> Write (define (map proc . lsts) ..)
- Use mapl to get the heads and tails of elements in 1sts

- Use apply to apply proc to the heads and cons the result onto an
appropriate recursive call of map

(define (mapl £ 1lst) ..)
(define (map proc . lsts)
. (apply proc heads) ..)

Now try making mapl and map tail-recursive!

